Friday, June 24, 2011

The Autopoiesis of Architecture

The aim is a comprehensive theoretical system that offers itself to architecture as its comprehensive self-description describing architecture from within architecture, in its internal constitution, and in its relationship to its societal environment. The premise here is that architecture has always already constituted itself self-referentially, via its own autonomous, disciplinary discourse.
The theory proposed here, the theory of architectural autopoiesis, focuses on architectural communications and “observes” these communications to detect its typical patterns. The theory analyses how individual communications depend upon and reproduce communication structures like the key distinctions, concepts, values, styles, methods and media of the discipline.

The book thus presents a discourse analysis of discipline. But the theory of architectural autopoiesis is not conceived as a scientific theory about architecture, written from the outside. Rather, it is a theoretical intervention from within architecture, itself trying to intervene in the ongoing communicative trajectory of architecture by reflecting architecture’s evolving patterns of communication in relation to its societal task domain. The text - if it suceeds – could function as architecture’s self-description because it describes, critically evaluates, and enhances the discursive totality of architecture in from within the midst of the contemporary architectural discourse.

Why is it called “The Autopoiesis of Architecture”?
The introduction of the concept of autopoiesis reflects the premise that the discipline of architecture can be theorized as a distinct system of communications. Autopoiesis means self-production. The concept was first introduced within biology to describe the essential characteristic of life as a circular organization that reproduces all its most specific necessary components out of its own life-process. This idea of living systems as self-making autonomous unities was transposed into the theory of social systems understood as systems of communications that build up and reproduce all their necessary, specific communication structures within their own self-referentially closed process. It is this total network of architectural communications, a gigantic, self-referentially closed parallel process, that is referred to in the title of the book: the autopoiesis of architecture is this overall, evolving system of communications.

The central thesis of “The Autopoiesis of Architecture” is thus that the phenomenon of architecture be most adequately grasped if it is analyzed as autonomous network (autopoietic system) of communications. The communications of architecture comprise drawings, texts and built works. The built works of architecture constitute a special set of reference points within the overall network of architectural communications, and serve society as communicative frames for social interaction.
This new approach offers an arsenal of general comparative concepts that allow architecture - understood as distinct communicative subsystem of society - to be analysed in elaborate detail while at the same time offering comparisons with other communicative subsystems of society like art, science and political discourse. On the basis of such comparisons the book insists on the necessity of disciplinary autonomy and argues for a sharp demarcation from both art and science. Design intelligence is an intelligence sui generis. Its logic, reach and limitations are the topic of this book.

The Autopoiesis of Architecture, Vol.2: A New Agenda for Architecture

Volume 2 builds upon the theoretical groundwork of Volume 1. While volume 1 theorizes architecture’s societal function in general, volume 2 addresses the specific, contemporary challenges that architecture faces and formulates the tasks that are posed to contemporary architecture. The task that architecture faces might be summarized as the task to organize and articulate the complexity of post-fordist network society. The theory of architecture’s task is followed by a theory of the architectural design process. The question is being addressed how contemporary architecture can upgrade its design methodology in the face of its increasingly demanding task environment characterized by both complexity and novelty. Architecture’s specific role within contemporary society is explicated and its relationship to politics is clarified. Finally, the emerging new style of Parametricism is introduced and theoretically grounded.

Monday, June 13, 2011

A good example of Generative Design

Good examples of generative design are hard to come by – because there aren’t many, especially, in architecture. What is often claimed as generative design usually turns out to be designer-driven design. This is perhaps, due to the late discovery of parametric history based design by architects and perhaps the failure of design academics to define Generative Design.

An interesting example of generative design is presented by Nate Holland at the ACADIA conference as part of his research. Nate is indeed practicing generative design as his work process exploits the computers generate and search capability in exploring of design possibilities at the two vertical extremes of the building: Firstly, at ground floor to locate the best shop location and then at the top levels to orient the towers according to the best views.

Project Teaser from Nate Holland on Vimeo.

I like the equation “Profit = Revenue – Cost ” because these terms are measurable. These are terms that architects shy away from often preferring to discuss their work in illusionary terms that defy measurement. However, Economic and environmental imperatives are now making architecture much more numerically accountable. I am not proposing architecture to a numerical activity like engineering. But I think, doing so will do a lot of good for generative design; because, if all of us carry our own yardstick we will be spinning our own yarns.

The means of measuring the efficacy of design is essential for the evolution of design methods. Despite decades of academic research , the evolution of design methods have been relatively slow and is now mostly driven by the evolution of tools (CAD). Generative design will benefit greatly from the discussion on design methods moving from marketing brochures to open discussions, and that is now beginning to happen. What is the best way to layout a store in the base of a building? What is the best way to orient towers with regards to views – these are some of the important issues that Nate has addressed.

The ability to measure provides us a means to verify the efficacy of methods. Dodging it will push architecture backwards and into the hands of those who can talk about it in languages that we do not understand. The reality is that any complex design problem is a multi criteria design problem. For sure, some of these criteria will defy measurement and they should. But many need not. Cost, rentability and thermal performance are some of them. Generative design is likely to prove its efficacy in these areas. Nate’s attempt to build in evaluatory criteria into design exploration are certainly in the right direction.

Nature of Order

Architects have been long obsessed with the aesthetic rationality of order, which formed the central tenets of architectural philosophy. A tenet that is now being shaken at its very foundation, bringing down with it the validity of centuries worth of interpretation of the nature of order that once formed the core of Western science and civilisation.

An Iraq born Professor Prof. Jim Al Kahaili traces the story of its dismantling.

What struck me most was this profound statement :

Design does not need active interfering designers. It is an active part of the universe

We need to think deeply about this. It prods us to think through a monumental question : What it is to design ? It is the very same question that obsessed ancient architects as they developed a rationality that suited them and their monarchic sponsors. They built their design philosophy on the platform of geometric logic that was then prevalent.

The new understanding of the nature of order has profound implications in every field of human endeavour. In architecture, I hope the implications are clear. It disconnects rationality from the aesthetic fundamentals that we have grown up with – assumed to be universal and on which the modern architecture was built. We now discover its logical foundations to be flawed.

This leads architecture into a catastrophic intellectual vacuum.

Is the orderless form langauge that we see in architecture today an expression of this ? Or is it a juvenile reaction to it ?


Reacting Skin 01

Reacting Skin 01 from PROBOTICS on Vimeo.

Tree Fractal by Anthony Mattox

Tree Fractal from anthony mattox on Vimeo.

Simple recursive functions can created complex geometric fractals. A functions draws a graphic and then by calling itself any number of times creates branches in the image. Each of the branches follows the same algorithm and creates the fractal. The transformations which occur between iterations, the graphic drawn, and any other steps or even randomized algorithms within the process determine the resulting fractals structure.

This animation was programmed with Processing.

More of my work is available at

Thursday, June 9, 2011

MSc2 protoCology

Modular spatial robotics and ubiquitous CNC-fabrication are two emergent technologies which affect design, construction and constitution of the built environment. The protoCology system combines both techniques in order to establish an ongoing casual dialogue between users and built environment. This dialogue employs the modalities of interaction, reconfiguration and fabrication of unique building components, ideally at equal speeds. ProtoCology consists of a) a real-time virtual model for fabrication and interaction control, b) a streaming fabrication pipeline, c) a database for lifecycle tracking of individual components, d) and intelligent building components. The prototyped ecology of components is developed to serve rapid design sessions in Hyperbody’s protoSpace laboratory. All components connect magnetically, via the magnets they transmit power and information. Each component is unique and in the initial implementation can be produced in an hour, at a material cost of <€50 including electronics. After improvements, fabrication time and cost are expected to drop fourfold.

Project Team:
Head Tutor - Christian Friedrich
Coordinator - Chris Kievid
MSc2 Students - Rene-Paul van Leeuwen, Michel Stienstra, Sander Apperlo,Gerben Knol
BSc6 Students - Igor Leffertstra, Marjolein Overtoom, Jasper Schaap, Jaimy Siebel, Wilson Wong, Frank Brunschot, Bao An Nguyen Phuoc


Tuesday, May 31, 2011

Morphogenetic structure - phototropic structure optimisation

Morphogenetic structure - phototropic structure optimisation from Agata Guzik on Vimeo.

A form for optimization is created by a spring-particle system, with gravity forces, damping, attraction and particles' mass integrated within the system. The structure is based on inverted gravity principle to derive the final form. Fitness objective is that certain points in space - which represent light sensors placed in physical environment, that are constantly taking measurements of light levels - are reached by corresponding points attached to the structure. Required form is achieved by adjusting mass of each particle and rest length of each set of springs. These parameters are in turn encoded in form's genotype. Changeable light levels corresponding with points are reflected in weights attached to fitness function. The fitness function is evaluated once the whole spring system gains stability, as it acts dynamically in time. In optimization process two various dynamic aspects play an important role in finding satisfying solution - physical movement of the structure and constantly changing fitness function.


Thursday, May 26, 2011

Ron Eglash on African fractals

Ron Eglash

"Ethno-mathematician" Ron Eglash is the author of African Fractals, a book that examines the fractal patterns underpinning architecture, art and design in many parts of Africa. By looking at aerial-view photos -- and then following up with detailed research on the ground -- Eglash discovered that many African villages are purposely laid out to form perfect fractals, with self-similar shapes repeated in the rooms of the house, and the house itself, and the clusters of houses in the village, in mathematically predictable patterns.

As he puts it: "When Europeans first came to Africa, they considered the architecture very disorganized and thus primitive. It never occurred to them that the Africans might have been using a form of mathematics that they hadn't even discovered yet."

His other areas of study are equally fascinating, including research into African and Native American cybernetics, teaching kids math through culturally specific design tools (such as the Virtual Breakdancer applet, which explores rotation and sine functions), and race and ethnicity issues in science and technology. Eglash teaches in the Department of Science and Technology Studies at Rensselaer Polytechnic Institute in New York, and he recently co-edited the book Appropriating Technology, about how we reinvent consumer tech for our own uses.

"Next time you bump into one of those idiots who starts asking you questions like, 'where is the African Mozart, or where is the African Brunel?' -- implying that Africans do not think -- send them a copy of Ron Eglash’s study of fractals in African architecture and watch their heads explode."

Final Project

It´ll be very interesting to research about the way that the nature structures can be build, and the very simple rules that they used, for example, the nature structure of some mineral.

Wednesday, May 25, 2011

Benoit Mandelbrot: Fractals and the art of roughness

TEDxCarletonU 2010 - Manuel A. Báez - Crystal & Flame: Form and Process

Brief introduction to the theme Crystal & Flame

As the twilight of the first decade of the new millennium fades and is followed by the emerging dawn of the second, the themes, values and observations identified by the writer Italo Calvino in 1985 as Six Memos for the Next Millennium (posthumously published in 1988, Harvard University Press), continue to offer us insightful guidance and inspiration. The Crystal & Flame is one of these cross-disciplinary, paradoxical and metaphorical themes. It offers a richly diverse history and new inspiring perspectives for the imagination, poetically evoked in the intermingling and catalytic Inhibition & Excitation of synaptic firing process-patterns that allows for thought and reflection on and through our embodied consciousness. An intrinsic fundamental theme deeply embedded in the reciprocal relationship within the ubiquitous paradox of constrained and yet versatile freedom.

In the memo on Exactitude, Calvino offers us the following:

The crystal, with its precise faceting and its ability to refract light, is the model of perfection that I have always cherished as an emblem, and this predilection has become even more meaningful since we have learned that certain properties of the birth and growth of crystals resemble those of the most rudimentary biological creatures, forming a kind of bridge between the mineral world and living matter.

Among the scientific books into which I poke my nose in search of stimulus for the imagination, I recently happened to read that the models for the process of formation of living beings "are best visualized by the crystal on one side (invariance of specific structures) and the flame on the other (constancy of external forms in spite of relentless internal agitation)."

What interests me here is the juxtaposition of these two symbols . . . Crystal and Flame: two forms of perfect beauty that we cannot tear our eyes away from, two modes of growth in time, of expenditure of the matter surrounding them, two moral symbols, two absolutes, two categories for classifying facts and ideas, styles and feelings . . . I have always considered myself a partisan of the crystal, but the passage just quoted teaches me not to forget the value of the flame as a way of being, as a mode of existence. In the same way, I would like those who think of themselves as disciples of the flame not to lose sight of the tranquil, arduous lesson of the crystal.

Tuesday, May 17, 2011

Studio Toys. Self-organize

The "Computing Kaizen" studio explored evolutionary architectural structures and their potential to anticipate change and internalize complex relationships. The studio used Processing, an open source platform for writing computational "sketches", to create intelligent building blocks that could self-organize into innovative forms. The interactive toys presented here are derived from the custom software written by the studio participants.

Friday, January 21, 2011

Mutsuro Sasaki - Architectural Record Technology

Mutsuro Sasaki - Architectural Record Technology

By Russell Fortmeyer

Mutsuro Sasaki

In his collaboration with the architect Arata Isozaki on the 2002 design competition for a new train station for Florence, Italy, the Japanese structural engineer Mutsuro Sasaki reversed his traditional role. He started with what he calls the “target values” for stress and deformation loads, and then worked back to the final structure. Instead of taking a given form and optimizing its structural conditions based on calculated stress loads, Sasaki generated an otherwise unknowable form by applying those “target values” on individual components of the structure. Each application rippled through the structure until a definitive form emerged.

“I like to take a different position for each project,” Sasaki says, which rather simplistically summarizes a working process that largely depends on theoretical research he conducts as a professor in the department of architecture at Tokyo’s Hosei University. During the interview, Sasaki quietly speaks through the voice of his translator, Hiraiwa Yoshiyuki, one of a few architects in his employ. Meetings like this occur at the small conference table in the surprisingly diminutive offices of his Tokyo firm, Sasaki Structural Consultants, surrounded by books and other publications featuring his work. Fewer than a dozen employees—engineers, architects, and assistants, many of them his former students—sit at workstations and ponder designs for some of the most exciting contemporary buildings in architecture today. Nothing about the fluorescent-lit surroundings suggests this as an office where a structure like that of the Florence station could emerge. “I don’t think so much about the future, about some clear idea of what I’m going to do next,” he says.

What Sasaki is doing next is surely a question more architects must be asking, as the engineer’s hand has been involved in some of the most complex—and extraordinary—new buildings of the past decade. record has featured several of them: In Japan, Sendai Mediatheque [May 2001, page 190] and Tama Art University Library [January 2008, page 88]—both with Toyo Ito—as well as the Louis Vuitton Omotesando store [February 2004, page 145], with Jun Aoki; and the 21st Century Museum of Contemporary Art [February 2005, page 88], and, in Ohio, the Toledo Museum of Art Glass Pavilion [January 2007, page 78], both with SANAA and, in Toledo, Guy Nordenson.

Rendering courtesy Arata Isozaki and Associates
Sasaki devised an erection scheme that proposed building out the sides before fabricating the central structure on grade to then lift it into place.

Similar methodologies thread through many of Sasaki’s projects, but the turning point in his recent career came with the 2001 completion of the Sendai Mediatheque. In a way, his collaborations with Ito and other leading Japanese architects stem from competing ideas introduced at Sendai. Sasaki divides architecture into two categories: abstract and spatial. For him, an abstract structure is straightforward, like Le Corbusier’s Maison Dom-ino—flat Miesian slabs supported by simple columns, repeated as necessary. Yet, a spatial structure, to put it as broadly as possible in terms of Sasaki’s work, is anything but straightforward. Sendai represents both of these strains, since the organization of the building consists of stacked flat slabs made of thin steel plates with steel ribs sandwiched between, although the vertical structure is a set of connected tubes forming webbed columns that sinuously flow through the building.

Rendering courtesy Arata Isozaki and Associates
The webbed “columns” branch across the station depending on how the structure could be optimized to address stress and deformation loads for the flat roof in an almost sideways version of what he had designed for Sendai Mediatheque.

Related Links:

New Museum of Contemporary Art
Behind SANAA's illusion of weightlessness
Slide show
Video Tour
Rate this project:
Based on what you have seen and read about this project, how would you grade it? Use the stars below to indicate your assessment, five stars being the highest rating.
Rated Not yet rated Rate This
----- Advertising -----
The story of the Sendai Mediatheque has the ring of legend, as Sasaki colors it in the way of so much fast-paced, globally connected design. “Ito had faxed me a sketch from Narita (Tokyo’s airport), and I responded in a few days with the structural concept,” Sasaki says, referring to Ito’s drawing, theoretically inspired by the way seaweed sways underwater. “Before that, I had never considered a structure like that.” One month later, the two designers had submitted a proposal for the project competition that reflected what was ultimately built: At the corners of the building, Ito and Sasaki arranged four large columns, ranging between 20 and 30 feet in diameter and consisting of tubes that vary from 5 to 10 inches in diameter, to resist the seismic forces of the building. The other remaining columns, which are as small as 7 feet in diameter, simply carry vertical loads. All columns connect to each steel-plate sandwich slab at ring beams, which allows some movement during seismic events.



Acercarnos a las ideas de Robert Le Ricolais (1894-1977) nos supone en cierto sentido despojarnos de nuestras ideas sobre la forma arquitectónica, tan ligadas a lo estético. Su búsqueda es un desafío a las nociones unánimemente aceptadas de forma y espacio, pues se basan en la exploración de la naturaleza con el auxilio de la teoría matemática. Su aproximación matemática a la forma desarrolla un proceso de pensamiento que trasciende las normas de percepción usuales, ya que pretende limar las consideraciones subjetivas, erosionar el detalle, eliminar lo circunstancial, lo accesorio.

La idea de forma para Le Ricolais no es una idea ligada a nuestra percepción sensorial de la realidad, ya que rechaza la importancia de la imagen por el carácter engañoso que tan a menudo tiene nuestra percepción del mundo. "Las cosas mismas mienten, y también sus imágenes" le gustaba repetir recordando el refrán oriental. Por otra parte, Le Ricolais rechaza la idea platónica de forma como estructura estática y se abre a la consideración de problemas contemporáneos entendiendo la noción de forma como un "concepto más fluido, a menudo unido con el parámetro de tiempo, que implica movimiento" (1). La extendida noción de forma como algo estático y cristalizado es para Le Ricolais una ilusión a nuestros sentidos. De un modo sorprendentemente contemporáneo, Le Ricolais escribía:

"Nunca más será la plaza de la antigua Roma nuestro foro, sino cierto tipo de sistema nervioso que permita a la gente entrar en contacto con otros y realizar las actividades del modo más corto y rápido. Ahora que nuestros movimientos se aceleran más que el crecimiento de la población, nuestros objetivos futuros puede que no sean cómo estructurar los edificios sino cómo estructurar las circulaciones."

Introduce de este modo una idea de forma "como la vemos en los organismos vivos, conectando lo estático y lo dinámico, que se hace comprensible por la relativamente reciente mecánica ondulatoria, y por la comprensión del movimiento vibratorio". Le Ricolais acepta la idea de Gauss, a quien llama el primer gran arquitecto de las matemáticas, de que la forma es una entidad puramente matemática, con propiedades intrínsecas. Y aunque él no se considera a sí mismo un hombre puramente sistemático, -ya que acepta que las hipótesis científicas son paradójicamente el punto de partida de la imaginación- no duda en afirmar que "nada en el dominio de la forma es tan arbitrario... nosotros trabajamos con cosas exactas, o se supone que son bastante exactas... las deducciones y las proposiciones han de probarse a sí mismas, no por seducción y buenas intenciones, sino que han de llegar a los hechos" (2). Para Le Ricolais, la realidad se moldea a sí misma de acuerdo con puras abstracciones matemáticas.

En su reflexión sobre la estructura de la materia y de la naturaleza, la intención de Le Ricolais consistía en encontrar aquello que subyace en lo que para él era la constante de nuestro universo: el cambio. En su trabajo, Le Ricolais asimila de un modo analógico enseñanzas pertenecientes a la biología, la topología, la geometría, y la cristalografía, situándose en la frontera de estas disciplinas. De este modo, Poincaré, Euler, Lord Kelvin, Ernst Haeckel y D´Arcy Thompson, son referencias constantes de su pensamiento.

Su interés por la arquitectura era patente; no olvidemos que desde 1954 enseñaba cursos experimentales de estructuras en la Universidad de Pennsylvania y su presencia era constante en el taller de proyectos de Louis I. Kahn, con quién mantuvo desde entonces una profunda amistad. Es posiblemente Le Ricolais quien más rigurosamente traduce el etéreo concepto usado por Louis I. Kahn de "inconmensurable" como "inmetrificable", interpretando así la idea kahniana de Forma en conexión con su pensamiento topológico de que lo esencial del problema de la forma escapa a la noción de medida:

"Una tendencia nueva, probablemente de origen abstracto o matemática, quiere hacernos considerar la forma como una pura geometría de ocupación del espacio, sustituyendo así las impresiones sensoriales imprecisas, por una noción más valedera de organización o de disposición, y en ciertos casos particulares de medida" (3).
En la naturaleza, por tanto, encontramos no modelos formales, sino modelos de organización, de disposición. "Como ha sido observado por muchos, mucho más importante que la naturaleza misma de las cosas, bien sean moléculas, átomos o electrones, lo que importa es el modo de disposición que estas partículas elementales y sus agrupaciones adoptan" (4). Por ejemplo, el estudio de la cristalografía, se convierte en la asombrosa riqueza combinatoria de disposiciones, no solamente en la repetición de una célula elemental, sino también en cómo se adapta su organización a las condiciones de los límites.

Como escribía Le Ricolais en la introducción a su no publicado libro que llevaba por título Matières, un conjunto de poesías sobre las fotografías de la fotógrafo suiza Henriette Grindat: "Todo no es más que cuestión de "disposición"; en la física, de electrones; en la poesía, de palabras; en todas partes están a mano salvajes energías, a punto casi de desaparecer si se rompen las oportunas conexiones...Sin duda en la mayor parte de los casos nuestras percepciones son torpes, y para descubrir estas disposiciones algo o alguien ha de descorrer un velo..."

La actitud de Le Ricolais ante la realidad, ante la investigación, no es otra que este estar preparado para lo inesperado de este desconocido arte de la disposición, de las combinaciones. La constante actitud de búsqueda en los problemas de la forma exige una gran vivacidad de espíritu, ya que "todo sistema o todo principio sistemático conduce fatalmente a una anquilosis". En ellas se quiere conjugar a la vez un abrirse a lo inesperado y una actitud de querer resolver los problemas decisivos, aquellos que son de la máxima importancia. En el caso del ingeniero francés, el punto decisivo era descubrir la relación entre la estructura de la naturaleza y la estructura de la forma construida por el hombre. La respuesta parece estar en la sorprendente expresión: la estructura de la estructura:

"La noción ESTRUCTURA invade el campo de nuestros conocimientos. En efecto, más que la estructura misma, importa más, si se me permite el pleonasmo, LA ESTRUCTURA DE LAS ESTRUCTURAS. Se ve dibujarse la evolución intelectual en curso, donde lo cualitativo importa sobre lo cuantitativo, con la emergencia de la noción matemática de variación".

"El lado seductor de la topología es su generalidad, y su erosión grandiosa del detalle; el arte de las conexiones se extiende no solamente a las fuerzas que actúan sobre las estructuras, sino también a las estructuras de las circulaciones, problema esencial de la vida urbana" (5).

La topología es la rama de la matemática que estudia las propiedades de las figuras geométricas que son invariables bajo continuas transformaciones. Dos figuras son topológicamente equivalentes si una se puede obtener de la otra curvando o estirando sin cortar ni plegar. Por esto se ha llamado a la topología "la geometría de la hoja de goma", pues sobre ella, un cuadrado es transformable en un círculo, y una esfera es equivalente a un cubo, pero no a un toro de revolución. La ideas de abierto, cerrado, conectado o no-conectado, son centrales en esta disciplina. Le Ricolais daba una especial importancia a la conectividad, y un escrito suyo titulado Topología y Arquitectura (6), lo encabezaba con unas palabras de Cyril Stanley Smith, director del Instituto de Metales de Chicago, cuyo interés por la topología venía desde su particular investigación de los metales: "¿Cómo puede la arquitectura, que trata de los problemas de las conexiones, ignorar la topología, que es, de por sí, la ciencia de la conectividad?"

La topología, al estar íntimamente relacionada con problemas de circulación, debía ocupar para Le Ricolais un lugar importante en la reflexión arquitectónica, pues no solamente ocupa una posición importante en la economía de las particiones, sino que también puede alcanzar consecuencias insospechadas al estar relacionada con la economía del desplazamiento, y con un valor que en nuestras ciudades va en aumento: el tiempo.

Para él, el mundo de las estructuras que la naturaleza nos presenta era un mensaje en clave que se había de ir desvelando lentamente: "la cara de las estructuras...un mensaje en clave que se nos envía en el modo en que las cosas se nos aparecen, descifrado lentamente, demasiado lentamente a pesar de nuestra impaciencia de saber...un despliegue de lo barroco, de lo inesperado, de las fuerzas que gobiernan nuestro universo, (...) de sus impulsos en la superficie de las cosas... Es siempre en las fronteras donde los serios incidentes afloran a la superficie..." Sin embargo, aún señalando que los problemas difíciles afloran en los límites, en la superficie de las cosas, también se interesa por lo profundo: "los cambios de terreno para nosotros no consisten en ir muy lejos por superficie, pues un lugar se parece mucho a otro; sino en ir lejos en profundidad, esas son las únicas travesías valiosas, fruto de una total inmovilidad".

No obstante, la permanente actitud rebelde de las cosas y sus imágenes, hace que a menudo mienta también la belleza de la naturaleza, e incluso las aparentes conclusiones de la propia investigación. Después de realizar el proyecto de Polígono Funicular de Revolución (que el llamó lemniscate, y resumía hasta entonces sus "verdades estructurales") construyó una estructura de un puente que manifestaba principios radicalmente opuestos a dicha lógica, que sólo resultó ser un diez por ciento menos eficaz que la primera. Este acontecimiento le llevó a cuestionarse toda su investigación: la razón parecía llevar solamente un pequeño porcentaje de prioridad sobre la sinrazón. Siguiendo este principio de apoderarse de la belleza de lo fallido, de lo no logrado, Le Ricolais siempre trató de escapar de algún modo hacia adelante, y de algún modo -él era también poeta- aprendió a abandonar la pura racionalidad con confianza cuando había motivos para ello.

Ernt Haeckel, dibujo de radiolarias.

Algunas estructuras naturales le sirvieron a Le Ricolais como recurrentes modelos de pensamiento. Las radiolarias, que fueron en primer lugar estudiadas por el biólogo Monod-Herzen, llamaron desde muy pronto su atención. Le Ricolais sugería que ningún arquitecto debía ignorar el trabajo de Ernst Haeckel, zoólogo que estudió en profundidad estas estructuras. ¿Por qué iba a ser solamente el biólogo quién dirigiera su atención hacia estos organismos? En estos extraños y delicados organismos Le Ricolais veía una sorprendente economía de material, un andamiaje estructural tridimensional que presentaba una curiosa síntesis entre estructuras trianguladas y láminas resistentes y una sorprendente organización espacial o disposición en un sentido topológico. En estas organizaciones espaciales se encerraba para él el futuro de las estructuras.

En una ocasión Le Ricolais fue objeto de una broma de sus alumnos: un esqueleto humano apareció colgado junto a uno de sus artefactos estructurales, una de las muchas maquetas que existían en el taller experimental de estructuras de la Universidad de Pennsylvania. Era una crítica a su exagerado nivel de abstracción y a su alejamiento de lo antropomórfico. Pero el sucedido no fue obstáculo para realizar algunos experimentos, para cuestionarse cómo un esqueleto humano era eficaz desde un punto de vista estructural. Al pesarlo se vio que se trataba de una estructura considerablemente ligera (unos cinco kilogramos de peso), que comparada con el peso del hombre junto con el de sobrepesos añadidos resultaba que ese esqueleto podía aguantar bien veinte veces su peso propio: poco peso, pero gran solidez estructural. Era a simple vista un incomprensible logro de la naturaleza.

La respuesta se encontró al examinar una microfotografía de la textura de un hueso. Ningún elemento era igual. La estructura interna consistía en una malla tridimensional de gran complejidad formal, cuya geometría se rebelaba ante cualquier cálculo, debido al gran numero de barras por junta y a su gran variabilidad. Ante este descubrimiento Le Ricolais afirma que "si se piensa en los vacíos, en lugar de trabajar con los elementos sólidos, la verdad aparece" (7). La estructura estaba compuesta de agujeros, todos de diferente forma y distribución, pero con un inconfundible propósito en su materialización. Así llegó Le Ricolais a la posiblemente más rotunda y arquitectónica de sus paradojas: el arte de la estructura consiste en cómo y dónde colocar los agujeros. Una idea tremendamente ligada con toda forma construida: construir con agujeros, construir con materia hueca, con estructuras huecas, resistentes, pero sin peso.

Después de todo lo dicho sobre la reflexión de Le Ricolais, de su metodología, de sus implicaciones epistemológicas, nada tendría valor realmente arquitectónico si no se diera el paso de proponer, de un modo concreto y material, artefactos construidos. Sus construcciones, muchas de las cuales puramente experimentales, pero cargadas de la fuerza añadida que tiene el hecho de ser realmente construidas y ensayadas en resistencia, se regían por principios que bien podían ser aplicados más generalmente a la arquitectura. Aunque para Le Ricolais fueran a veces difícilmente trasladables a una condición de uso, éstos artefactos partían de un contexto de medios de producción comunes con los de la arquitectura, así como de los condicionantes que la estandarización y la prefabricación impone en nuestra sociedad industrial.

A Le Ricolais le interesaba enormemente el concepto de cuerda, entendido como un sólido formado al enroscar juntas tiras de hilo o de cable; que a su vez está formada por fibras, sucesiones lineales de granos de materia fuertemente conectados entre sí. La cuerda es una estructura de gran eficacia estructural cuya clave se encuentra en su proceso de fabricación: al enroscar unas fibras junto a otras, se refuerzan mutuamente en su capacidad de resistir tensión. Una idea casi obsesiva en el pensamiento de Le Ricolais era la de "meterse dentro de una cuerda", encontrar el modo de construir una cuerda hueca, dándole así rigidez: "¿Quién conoce una estructura mejor que una cuerda? Si tu puedes hacer una cuerda a mayor escala sin nada dentro, trabajaría como si fuera una lámina extremadamente delgada, y no pandearía, pues está tensionada" (8).

Los tejidos se convierten para Le Ricolais en un modelo muy relacionado con la idea topológica de disposición, de organización espacial de elementos. La propia organización del tejido como estructura resistente, como conjunto de agujeros separados y rígidamente atados, según un proceso de fabricación industrial se transforma de este modo en un modelo para la arquitectura. Le Ricolais, que pensaba que cuantas más cadenas se introducen en una estructura, mayor es su capacidad resistente y rigidez, llegaba a entender el proceso de hacer una estructura eficaz con un símil muy próximo a lo textil, a la trabazón de fibras: todo se reduce a "hacer una adecuada distribución del máximo numero de agujeros, y conectarlos entonces lo más rígidamente posible con cadenas que los rodeen" (9).

Y siguiendo con el símil textil, nos propone Le Ricolais el ejemplo del traje con agujeros, en el que el sastre ajusta la tela a la talla y al oficio del vestido. Las mallas repetitivas, tan frecuentes en los elementos constructivos, pueden ser consideradas así como una clase de tejido, que explota su estructura resistente y su constitución de fibras y agujeros, para aplicar otro orden constructivo, en este caso el del arquitecto, que lo adapta a sus necesidades de uso, y a unas condiciones de sus límites. Son, en último extremo, los agujeros lo que se conserva, lo que ha de persistir, donde está el problema esencial para Le Ricolais. En un resumen de su actividad investigadora desde 1935 hasta 1969, él mismo reconoce: "Por extraño que parezca, a pesar de la diversidad de nuestra búsqueda, y de la variedad de sus objetos, nuestra preocupación esencial ha sido siempre de algún modo la de hacer agujeros" (10).

Su idea de forma como algo abierto, no cerrado, y, a la vez, como algo rigurosamente exacto en su organización espacial, en su disposición, y no como noción estática, puramente externa, de apariencias; su interés por el modo de cruzar los materiales, de enhebrarlos unos con otros, de dejar agujeros en ese proceso, de atarlos y disponerlos adecuadamente; su permanente interés por pensar en los vacíos como el lugar donde reside el secreto de la forma construida; su mirada a la naturaleza como conjunto de leyes a obedecer, paradojas a descifrar y nunca como modelo literal a imitar; y su atención al proceso constructivo, tratando de descubrir en él las leyes de generación espacial, con una consideración topológica de los problemas, de simplificar lo accesorio, de erosionar el detalle, para llegar a las categorías que permanecen en nuestro mundo cambiante, son todas ellas actitudes que reflejan la extrema actualidad e interés de la investigación de Robert Le Ricolais.

Antonio Juarez.
Columbia University, New York, Otoño 1996

(1) LE RICOLAIS, Robert, Introduction to the Notion of Form (1966) en Data: Directions in Art, Theory and Aesthetics, New York Graphic Society Ltd., Greenwich, Connecticut, 1968, p. 48.
(2) LE RICOLAIS, Robert, Things themselves are lying, so are their images. Interviews with Robert Le Ricolais, 1973.
(3) LE RICOLAIS, Robert, 1935-1969, Etudes et Recherches, en Zodiac no. 22, 1973, pp.17-19.
(4) Ibid. pp.17-19.
(5) Ibid. pp. 18.
(6) LE RICOLAIS, Robert, Topology and Architecture, Student Publication of the School of Design, North Carolina State Collage, Raleigh, North Carolina, vol. 5, no. 2, spring 1955, pp. 10-16.
(7) LE RICOLAIS, Robert, Things themselves are lying, so are their images, op. cit., pp. 88.
(8) LE RICOLAIS, Robert, en Visions and Paradox; An Exhibition of the Work of Robert Le Ricolais, (catálogo), Meyerson Hall, University of Pennsylvania, Philadelphia, January-February 1996.
(9) Ibid.
(10) LE RICOLAIS, Robert, 1935-1969, Etudes et Recherches, op. cit., p. 18.

CIRCO M.R.T. Coop. Rios Rosas n. 11, esc. A, piso 6, 28003 MADRID.
Editado por: Luis M. Mansilla, Luis Rojo y Emilio Tuñón

An Engineering Magician, Then (Presto) He’s an Architect. CECIL BALMOD

WHEN the ribbon is cut this weekend and Cecil Balmond takes his first tentative steps onto a bridge he has just finished in Coimbra, Portugal, it will represent a crossover into unknown territory. After decades of service to some of the world’s most celebrated architects, this is the first project he can truly claim as his own.

Skip to next paragraph
Slide Show
Architecture and Engineering
Readers’ Opinions
Forum: Artists and Exhibitions

Enlarge This Image

Thomas Graham/Arup
Mr. Balmond with a model of the Battersea project. More Photos »
“I’m pretty proud of it,” Mr. Balmond, 63, said in a recent interview over tea at a Park Avenue hotel. “In elevation it seems perfectly normal. It’s a simple arch. But as you move closer, half of it disappears into shadow. It becomes really strange and ephemeral.”

The visually confounding footbridge shifts abruptly at midpoint, as if the center had snapped and either side were dangling precipitously over the river.

Mr. Balmond, deputy chairman of the British engineering firm Ove Arup, is hardly a late bloomer. He has made structural feats like these possible for a pantheon of architectural luminaries over the last 30 years, from James Stirling and Philip Johnson to Rem Koolhaas, Daniel Libeskind and Alvaro Siza.

As architects push the limits of their formal language, Mr. Balmond’s engineering genius has been crucial to the emergence of a new aesthetic of shifting asymmetrical structures that mock conventional notions of stability. Beyond making their projects buildable, his solutions spur such architects to explore forms they might not have considered before.

But Mr. Balmond has decided that the mantle of engineer is not enough. In 2002 he began working with the artist Anish Kapoor on the first of a series of colossal public artworks: a tubular blood-red sculpture installed at the Tate Modern that seemed to defy gravity. He has emerged as a full-fledged author with works like “Informal,” a window onto the playful back and forth between architect and engineer in sketches and diagrams. And at Arup he has organized an “advanced geometry unit,” a tight-knit group of engineers and mathematicians who have ventured onto turf normally reserved for architects, from houses to office buildings to master plans.

His shift to architectural work has raised an eyebrow or two in the profession. Some fear it will distract him from his primary engineering work. Some dismiss it as an ego thing. But Mr. Balmond’s career raises a broader question about the nature of collaboration. If a skilled engineer can boldly enrich the work of even the most talented architect, what is lost when the architect is tossed aside?

As Mr. Balmond explains it, his view of both architecture and engineering has always been more intuitive than mathematical. “I was always looking at patterns — in music, literature,” he said. “It was never only about structure.”

Born in Sri Lanka in 1943, he was reared in places that were both rich in cultural influences and in a constant state of political turmoil. His early memories include walking to school along lush mountain roads in the Sri Lankan village of Kandy, where his father was president of the country’s only university. With the outbreak of a civil war, his family left for Nigeria, where in his early 20s he was introduced to the writer Wole Soyinka and musicians like the political activist Fela Anikulapo Kuti.

When war broke out in Nigeria in 1967, he moved again, landing in Southampton, England, where he enrolled in the university’s department of engineering. “In those days what I wanted was to be a classical guitarist,” Mr. Balmond said. “I was playing flamenco gigs in bars.”

In settling on engineering, he saw it as a conventional career choice that played to his talent in mathematics. Yet when he arrived at Arup in 1968, the firm was in the throes of what is still considered one of the most audacious challenges of the late Modernist era: the construction of the Sydney Opera House. Designed by an inexperienced young Danish architect, Jorn Utzon, the opera house’s sail-like roof forms had proved unbuildable. Arup was brought on to rescue the project.

Its solution was ingeniously simple: rather than try to meld an elaborate composition of dissimilar forms, all of the shells would be designed with exactly the same curvature, as if they had been cut out of a single orange. They could be efficiently manufactured; but more important, those concrete plates also gave the design a formal clarity it had lacked. Completed in 1973 in Sydney Harbor, it was hailed as a masterpiece that signaled new possibilities for architects across the globe.

For Mr. Balmond it was an epiphany. Beyond crunching numbers, he realized, engineering could mean rethinking an architect’s design.

“I realized that engineering was more than calculating,” he said. “I became intrigued with the way that forces shaped things, the way you assemble structures in series. The idea that we could help shape things — all that was in the air.”

Ove Arup, a founder of the firm, eventually took the young engineer under his wing. “It was a training ground.” Mr. Balmond said. “Mr. Arup was my critic. I’d have to see him every few months, and he’d argue for the poetic qualities inherent in concrete over steel, for example. I was really refining my game. I was learning to push a structure further, span impossible distances.”

Skip to next paragraph
Enlarge This Image

A rendering of the Twist building at Battersea, designed by Cecil Balmond. More Photos >

Slide Show
Architecture and Engineering
Readers’ Opinions
Forum: Artists and Exhibitions

Enlarge This Image

A private home near Bordeaux designed by Rem Koolhaas, on which Mr. Balmond worked. More Photos >
In 1977 he worked with the architect James Stirling on the stone-clad Staatsgalerie in Stuttgart, Germany, now considered a masterpiece of postmodernism. But the breakthrough was his partnership with the Dutch architect Rem Koolhaas, who enlisted him to work on a competition for a modest bank building in Amsterdam. (They lost.) Soon afterward Mr. Koolhaas embarked on the ZKM Center for Art and Media Technology, in Karlsruhe, Germany, with the idea of carving out immense sloping voids within a rigid block. The multistory voids, which include a lecture hall, library, museum of contemporary art, media theater and video labs, would function as a “Darwinian arena” where classical and electronic media would be in a constant delirious competition.

Pondering how to carve out such vast spaces without causing the building’s collapse, Mr. Balmond opted to create a stack of interior Vierendeel trusses whose ribs form triangulated units.

For Mr. Balmond and Mr. Koolhaas, such solutions are part of a running argument that architecture has been confined too long within the Cartesian logic of compartmentalized space. Yet while other architects experiment with radical forms, these two root their work in a more fundamental rebellion related to engineering itself. They want to defy the regimented order of the industrial world, shake it up, embrace the fundamental discontinuities of everyday life.

“We were saying that simply making an endless variation of new forms was too superficial,” Mr. Koolhaas said in an interview. “Instead of making unsober forms, we became interested in making unstable engineering behind sober forms.”

They explored that notion further in Mr. Koolhaas’s 1997 house near Bordeaux for Jean-François Lemoine, a French newspaper executive confined to a wheelchair after a car accident. The house, pierced by an enormous platform elevator the size of a full room, consists of three levels: a massive slablike level at the top; a vast glass-enclosed living area in the middle over which the slab seems to levitate; and a concrete plinth that forms the house’s private core, with a kitchen and wine cellar. Offsetting its symmetry, a deep steel beam spans the flat rooftop as if to keep the slab from tipping over.

“I wanted to give the client a sense of security,” Mr. Koolhaas said. “Strangely, we could do that with this insane amount of mass floating above his incredibly vulnerable head.”

A collaboration with Daniel Libeskind on a spiraling addition to the Victoria and Albert Museum in London led Mr. Balmond to explore a new thread in his work: a layer of ornamental surface patterns that in themselves spoke to a building’s structural logic. With its elaborate textured tiles, the 1996 addition seems to shimmer and defy gravity, even though it is wedged between two stolid 19th-century structures.

Going a step further, Mr. Balmond and the Japanese architect Toyo Ito played with a pattern of overlapping squares across a delicate lacelike skin for the Serpentine Gallery Pavilion in London (2002). It was not only decorative but also supported the entire structure. And in Mr. Balmond’s first solo show, a project in Artists Space in SoHo last month, he deployed a series of interlocking C-shaped metal panels to create a labyrinth of small rooms. Evoking an Indian rope trick, an elaborate steel chain seems to stand with no visible support.

“I was looking at the layers of orders in Gothic architecture — how simple geometric rules creates an external architecture,” Mr. Balmond said. “The Gothic cathedrals had all these different levels of layering, structural and ornamental. These were all things that Modernists had dropped. I wanted something more.”

But it is Mr. Balmond’s mainstream architecture commissions that preoccupy some of his peers. Just as architects rely on engineers for structural experience, engineers rely on architects for their own area of expertise: an instinctive sense of how material and space convey hierarchies, for example, or of how a building speaks to its surroundings. Such skills may be intuitive, but they are skills nonetheless. It’s what gives architecture its poetic quality, and it cannot be learned overnight.

Mr. Balmond prefers to see this latest career turn as part of a consistent trajectory rather than a blind leap into the unknown. He has reassured his architect friends that he is not in direct competition with them; nor is he turning away from his responsibilities at Arup, he says. The Coimbra project, the symbolic bridge to his solo practice of architecture, could well be viewed as an essentially structural project.

Skip to next paragraph
Slide Show
Architecture and Engineering
Readers’ Opinions
Forum: Artists and Exhibitions
Mr. Balmond began with a simple idea: to create a sense of instability that intensifies as a pedestrian reaches the midpoint. The bridge is actually conceived as two independent structures cantilevered from each side of the river. A concrete beam runs along one edge of each half and tapers as it reaches the midpoint, so that the center suddenly kinks. The sudden shift is as much about engineering bravura as a physical experience.

The weakness lies in the bridge’s decorative flourishes: its jagged side rails, clad in blue, pink and green colored glass, feel slightly overwrought and compete with the sleekness of the supports and spans. Far more audacious is Mr. Balmond’s master plan for an office, hotel and retail development on a 36-acre site on the south bank of the Thames in London. Given the project’s whopping $3.8 billion budget, Mr. Balmond may seem an eccentric — not to say highly risky — choice as its main planner.

But the developer, Victor Hwang, had fallen in love with the algorithmic pattern of the pavilion that Mr. Balmond designed with Mr. Ito for the Serpentine Gallery. “Cecil said this is a very simple theory: You can do it anywhere, any shape, any size,” Mr. Hwang said. “My belief is that architecture in the future will have to be based on something solid rather than something vague. It needs a mathematical foundation.”

The problem is that the master plan never completely coheres. The site, anchored by the towering form of the abandoned Battersea power station, which is being converted into a shopping mall, is organized as a series of buildings that frame a series of internal plazas. Mr. Balmond describes those plazas as a series of shifting planes that slope up toward the Thames, culminating in a formal garden overlooking the city to the north.

But the plazas, which range from small enclaves to vast public squares, feel shapeless and oddly disjointed, like leftover space. A similar problem afflicts a building he has designed in the form of a twisted rectangular box at the site’s southern edge. Its meshlike skin echoes projects in which the exterior surface is both decorative and structural. By twisting the form, he creates a gentle arch beneath the building that offers a natural entry point, intended for a design center, showroom and offices. A series of ramps swirl up through the interior.

Yet the building’s exterior form is less an expression of its interior function than a sculptural study conceived on a massive scale.

Mr. Balmond is obviously grappling with some fundamental architectural lessons, from the complex relationships between interior and exterior forms to those between ornament and structure. A younger, lesser-known talent would be able to work through these struggles in relative privacy and at a more manageable scale. Mr. Balmond does not have that luxury. Already a titan in the engineering profession, he is finally poised to get the public attention he feels he deserves. The paradox is that he may feel less free to make the kind of mistakes that are intrinsic to creative growth.

For now, Mr. Koolhaas suggests, Mr. Balmond should be glad that his fame is so far limited to professional circles. “The role of the architect is so exaggerated today it drives people crazy,” he said.

“Maybe this work is a smart way to take a breather,” he continued. “But from the bottom of my heart, I told him that he doesn’t know how lucky he is not to have to deal with this star thing.”

Published: November 26, 2006

Sunday, January 9, 2011

Example by a great group of architects about self organizing design



Saturday, January 8, 2011

Example FAB-LAB

10 Online Grasshopper Resources

Hi all, I´ll be publishing various post or videos about Grasshopper online resources that I´ve found very useful at both the academic and professional levels